Standard Functions
Advanced Functions
  1. Fluorescence Microscope BZ-X700: Home>
  2. Microscope Observation Modes>
  3. Features of Each Observation Mode: Observation Modes

Basics of Microscopes

Microscope Observation Modes

Features of Each Observation Mode

Brightfield microscopy

The type of microscopy generally used in biological microscopes. It illuminates the entire sample with direct light and observes it with transmitted or reflected light. This type of microscopy features a bright background and is widely used for inspection of dyed samples, pathologies, and semiconductors.

Darkfield microscopy

This type of microscopy only allows the light scattered or diffracted by the sample to enter the lens so that light can be projected against a dark field of view. It is suitable for observing colorless, transparent samples such as living cells, which are difficult to identify with brightfield microscopy. Darkfield microscopy also enables observation of minute features over the resolution limit of optical microscopes. A special condenser is used for this type of microscopy.

Phase contrast microscopy

This type of microscopy is based on the phase contrast (light variations) caused by light diffraction. Colorless, transparent samples, such as living tissues and cells, are difficult to image using brightfield, but they generate phase contrast due to their differing refractive indexes or thicknesses. Converting this contrast to brightness contrast enables this type of sample to be observed.
This type of microscopy allows cells and other objects that could only be observed against a dark field to be observed against a bright field. In addition, living specimens can be viewed because they need not be dyed. A ring-shaped phase plate with a slit in it needs to be used with this type of observation method.

Polarized light microscopy

Using polarization (biasing of vibration direction of light), this type of microscopy illuminates a sample and makes use of two polarizing plates that can be rotated for observation. If the plates are parallel, the sample appears bright; if the plates are perpendicular, the sample appears dark.
This type of microscopy is useful for observing rock and mineral slices to identify their crystal structures. It is also used to observe fibers, polymers, semiconductors, and bone tissues.
A special objective lens and two types of polarizing plates, polarizer and analyzer, are used for observation.

Differential interference contrast microscopy

As with phase contrast microscopy, differential interference contrast (DIC) microscopy is suitable for observing colorless, transparent samples. It differs in the imaging technique because DIC converts the difference in how light travels to changes in brightness, while phase contrast uses light diffraction.
It is suitable for observing relatively thick samples and also allows for 3D imaging. In addition, because images captured with this type of microscopy complements that captured with phase contrast microscopy, more accurate observation is possible by comparing the results of both.
Objective lenses are marked "DIC" if they are suitable for this type of microscopy.

Modulation contrast microscopy

Also called relief contrast microscopy, modulation contrast microscopy is suitable for observing colorless, transparent samples. Modulation contrast converts the difference in surface heights of a sample to brightness contrast for observation.
As with differential interference contrast, an image can be observed in 3D, although the principles differ. Another difference is that the use of plastic containers is allowed by modulation contrast microscopy, but not by differential interference contrast. Accordingly, this microscopy is suitable for observing sperm and egg cells.

Reflected light microscopy

This type of microscopy uses reflected light for observing samples that do not pass light, such as rocks and minerals. This category can also be further divided into subfields such as brightfield, darkfield, and differential interference.

Dispersion staining microscopy

By immersing a sample in index oil, dispersion staining microscopy performs observation by detecting light dispersions by the different refractive indexes of oil. It is mainly used to identify asbestos and their types.

<< Comparison among Observation Mode

Back to top