Laser Marking Systems / Laser Markers
Laser Marking Systems / Laser Markers
KEYENCE offers a diverse collection of laser markers, ranging from Fiber to UV to CO2 systems. Our team also delivers their technical expertise, rapid support response time, same-day shipping and personalized integration so you can enjoy a fully realized traceability solution.
Product Lineup
Features
World’s Smartest Laser Marker
Built-In Vision
Mark the same location on any part, anywhere.
The MD-X Series contains a camera inside the laser marking head which can automatically identify a target’s shape. The laser marker can then adjust for X, Y and theta offsets to ensure the marking position is always correct.
The marking system is even able to distinguish between parts and mark each part accordingly.
Autofocus Anywhere
Mark in-focus on any part, anywhere.
The MD-X laser marker comes standard-equipped with a built-in distance sensor that enables automatic focal corrections. Eliminate manual height adjustments due to part variations in a few simple steps.
Data-Driven Analytics
Automatic fault protection and monitoring from anywhere.
The new MD-X uses predictive maintenance to eliminate problems before they occur. In the unlikely event of a marking defect, the laser marker features a wide range of diagnostic tools to identify the root cause and deploy countermeasures.
MD-U UV laser markers are designed for high-contrast, damage-free marking applications. UV lasers excel at marking plastics, glass, and other heat-sensitive materials. The MD-U's marking head contains an embedded multi-function camera that can autofocus to a part, check-marking quality, and read 2D codes.
Features
Features of 355 nm Wavelength UV Lasers
The absorption rate is incredibly high for a variety of materials, which allows marking and processing to be performed with minimal heat stress.
Clearer, More Detailed
High-Contrast Marking
The MD-U Series is capable of generating greater contrast for more appealing aesthetics and improved readability on 2D codes.
Features
3-Axis Scanner Control
Conventional fiber lasers suffer from sub-optimal scanner controls, which directly affects their marking time and quality. MD-F laser markers optimize their scanner movement, providing better marks in less time for nearly every application.
Black anneal (wobble)
Vivid black marking is possible without bumps or cracks.
Deep-engraving control
Clear visibility is maintained even when a mark is painted over.
Cutting control (scratch control)
High-speed scanners reduce product distortion caused by heat.
Tough and Safe Marking Head
MD-F laser engravers are sealed off from the environment (IP64 rated) and include a built-in power monitor for easy maintenance. These lasers also boast a fanless design and KEYENCE’s smallest marking head, making the MD-F series robust enough to perform in dirty, dusty, wet and oily environments.
Features
3-Axis Beam Control
Three-dimensional control enables marking on non-flat surfaces such as cylinders, slopes, and stepped shapes. It also simplifies product and tooling changeovers. The wide 300 x 300 mm area can efficiently mark and process products simultaneously, helping reduce equipment costs.
Multiple Beam Options
The ML-Z Series lineup includes short-wavelength and thin beam models for unparalleled laser engraving and etching quality. These models not only eliminate unnecessary product damage but also contribute to more refined marking and processing.
Features
Ultra-high definition marking
Traditional lasers struggle to keep their marking area in focus due to F-Theta lenses. MD-T laser etching machines use telecentric lenses to emit their beam straight down across the entire field.
Conventional: Diagonal incident laser beam
MD-T: Perpendicular incidence over the entire area
Unparalleled accuracy and stability
The MD-T’s monocoque design limits warping due to stress and temperature changes. Distortion that occurs during installation is limited to 2 μm or less.
Simply put, laser markers use high-energy light to mark the surface of a part. Laser markers vary by the wavelength of light, and different wavelengths are optimized for marking and processing different materials.
The majority of industrial laser markers are YVO4 lasers, fiber lasers, UV lasers, and CO2 lasers.
Laser markers are used to permanently mark text, logos, barcodes, or 2D codes on parts in all industries. Common marking types include oxidizing, annealing, engraving, etching, discoloration, and processing.
Benefits of Laser Markers
Inkjet and pad-printing systems leave impermanent marks that can be rubbed off or fade away. Laser marking does not wear off or contaminate the product being marked.
Because laser markers use light to directly mark products, there is no need to purchase consumables, clean print heads, or perform other routine maintenance tasks that are necessary with conventional ink and label marking methods. This also helps reduce associated maintenance costs.
Typical systems can only mark in 2 dimensions (X and Y). KEYENCE laser markers have 3-axis beam control, allowing them to mark across a larger area, compensate for part variation, and correct for mounting restrictions with zero physical equipment adjustments.
For industries that use shot blasting for strengthening parts, laser markers can be a solution for ensuring shot blast-resistant marks. Laser markers use engraving to create 2D codes that do not get fully tarnished with shot blasting.
Laser Marker / Laser Engraver Case Studies
Laser marking in the automotive industry
Learn how laser markers are used with automotive parts. KEYENCE introduces specific laser marking in automotive and other various laser marking with cars.
Laser marking in the electric vehicle industry
Curious how laser markers are used with electric vehicles? KEYENCE introduces specific laser markings for the EV industry and other various laser marking with batteries and ECUs.
Laser marking in the battery industry
Discover laser marker applications in lithium-ion battery manufacturing. Learn about lithium battery production and manufacturing processes.
Laser marking in the semiconductor industry
Learn about the various ways laser marking has improved electronic components. KEYENCE will also explain electronic parts demand accurate marks with damage-free results.
Laser marking in the medical industry
Curious how laser markers are used in the medical industry, especially with medical device laser marking? KEYENCE introduces specific laser markings for the medical industry and other medical instruments.
Laser marking in the aerospace industry
KEYENCE America offers cutting-edge solutions for aerospace laser marking. Ensure compliance with aerospace part marking standards using our advanced machines and systems.
Laser marking in the food / pharmaceutical industry
How are laser markers being used in the food and pharmaceutical industries? This section on laser engravers introduces industry-specific applications to help in developing new manufacturing processes.
Laser marking on metal
This section introduces metal laser marking using illustrations and applications for creating dark metal laser markings, white metal laser markings, deep laser engravings, and metal laser processing.
Laser marking on plastic
Discover plastic laser marking: explore laser etching and engraving. Explore the world of laser marking plastic, including dark and white markings, transparent designs, and so on.
Laser marking on glass
Unlock glass engraving with our laser marking solutions: precision glass marking and etching. Discover our glass engraving machine for exquisite laser glass engraving.
Laser marking on ceramic
Ceramic laser engraving is the process of using a laser marking machine to engrave a ceramic product. Laser machines remove ceramic material through high heat absorption, leaving behind a marked design.
Laser marking on wood
Elevate wood and paper marking with laser precision. Explore laser marking on wood and paper, with our advanced laser wood engraving machine.
Laser marking on rubber
Unlock precision rubber marking with laser technology. Explore laser marking for rubber and silicone rubber, including laser-cutting capabilities.
Frequently Asked Questions About Laser Marking Systems / Laser Markers
Laser markers work by scanning a focused beam of high-energy light across the surface of a part in the desired pattern. Different contrast, depths, and surface finishes can be achieved depending on the laser wavelength and part material.
Laser marking causes discoloration on the surface of a part, whereas laser engraving actually removes material and "digs in" to a part.
Practically speaking: no. Laser etchers interact directly with the surface of a part, so the only real way to remove a laser mark is to remove the material it's on.
With a variety of different models and wavelengths, KEYENCE laser markers can mark a wide range of materials. These include materials such as metal, plastic, glass, ceramic, wood, and rubber. There are even more materials than listed that can be marked but some have been shown to emit harmful gases. In this event, proper guarding and fume extraction should be used to provide a safe operating environment.
When choosing the correct laser marking system for your business many factors should be taken into consideration. Throughout this process, you should evaluate all laser marking models to determine the proper wavelength, wattage, marking field of view, and safety requirements. Below are the main factors:
・Materials – this will narrow down laser marking models by wavelength.
・Time allowed for marking – with marking time you can determine wattage.
・Marking Style/Setup – whether it is a large logo or a matrix of small text this will determine the marking field of view.
・Integration style – safety is always a priority so inline vs offline solutions will change the safety requirements.
With KEYENCE having a large range of wavelength options to choose from, most materials have the ability when properly tested to be marked or etched. Some that do not properly absorb laser light or produce toxic fumes include Delrin, PVC, Glue Backing, and Foam.
In comparison to a conventional IR laser marking system, a UV laser marking system has a much shorter wavelength, typically 355nm, which gives it many advantages when marking specific materials and applications. UV light is the best option for laser marking objects made of heat-sensitive materials, such as plastics or resins. With the lower wavelength, you receive a higher absorption rate allowing for contrast marking on a wider range of materials as well.
When deep engraving with a laser marking system, any depth can be achieved depending on how much time is required to complete the mark. Depending on the material and level of depth laser marking may not be the most efficient solution.
Laser Marker Applications
Laser marking
Laser marking is a marking method that uses a focused laser beam to alter the surface of a target. This section introduces how laser marking is performed with different materials as well as the different types of laser marking machines and how they are used.
Laser engraving
Explore the laser engraving craft: achieve precise markings on a variety of materials. Learn how laser engraving leaves lasting impressions on your products.
Laser etching
Discover the world of laser etching with KEYENCE: explore laser etching machines, materials, and a range of cutting-edge solutions for process enhancement.
Laser annealing
Exploring laser annealing: types, uses, and metal applications. Discover the transformative power of this advanced technique across industries.
Laser labeling
This page includes examples of successful processing improvements made possible by replacing labelers with laser markers (such as for substrate history management labels and vehicle nameplates).
Laser cleaning
Elevate production quality with laser cleaning technology: remove dust, rust, and imperfections efficiently, reducing costs and improving precision.
Laser rust removal
Efficient rust removal with KEYENCE America's laser rust remover machine. Experience the power of laser technology for precise rust removal.
Laser oxide removal
Check out KEYENCE's advanced laser oxide remover. It's an efficient laser that can even clean aluminum and precise cleaning with other oxide removal.
Laser ablation
Exploring laser ablation: types, uses, and metal applications. Discover the transformative power of this advanced technique across multiple industries.
Laser texturing
Exploring laser texturing: types, uses, and metal applications. Discover the transformative power of this advanced technique across industries.
Laser cutting
Learn about laser cutting—the process that uses laser light to cut a target—through various examples and different ways to use a laser cutting machine.
Laser paint removal
Laser paint removal is a process that uses a laser to peel paint from a target, and surface peeling. The process that peels the film or plating from a target—through various examples.
Laser drilling
Learn how laser drilling can be used to drill holes by irradiating the laser light on a single point. Learn everything you need to know about drilling with a laser.
White engraving
White engraving is produced by applying a focused beam to the surface of a material to generate enough heat to cause the material to melt. This very quick melting and solidifying of the material causes light to interact with it differently, resulting in a white appearance.
Laser Marking Types
There are five types of laser markers that KEYENCE offers, and each is distinguished by wavelength and marking power. Understanding the identifiers and strengths of each will assist you in choosing the machine for your project.
UV
UV lasers are known for their high absorption rate allowing for the process of “cold marking.” Cold marking refers to the ability to mark contrast without relying on the thermal process that Fiber lasers rely on. This is possible because the shorter wavelength of UV lasers generates higher absorption on almost all materials. A UV laser marker is ideal for highly reflective materials like copper, gold, and silver, as well as other materials like glass, plastic, and rubber.
Fiber
Fiber lasers are identified by their high output power, quick marking speed, and long service life. These laser markers are versatile with materials and marking abilities. Fiber lasers can engrave, anneal, mark, etch, cut, and remove burr on metal, plastic, and ceramics. These lasers are best used on metals.
Hybrid
Hybrid laser markers combine the high quality and depth of focus from a YVO₄ laser with the long service life and high output of fiber lasers. This allows Hybrid lasers to generate more contrast and mark a wider range of materials than Fiber lasers.
CO2
CO2 lasers are distinguishable as they are gas lasers that use heat to mark materials. These lasers are not ideal for metals but do well on organic materials like paper, plastic, glass, and ceramic.
Green
Green lasers excel at marking at a micron level because of the short wavelength. This is great for micro processing and for microscopic 2D codes, utilized often in the semiconductor industry.

KEYENCE has put together a rich collection of practical, knowledge-based information for getting the most out of a laser marker. This website contains actual marking applications and advice on how to choose a laser marker.

This quick guide introduces the basics of metal marking. Learn why different wavelengths matter and discover the various ways laser light interacts with metal parts.

Choosing the right laser marker wavelength is extremely important for plastic marking. Learn what lasers work best for marking, processing, and coloring plastic in this guide.

2D codes have become a near-universal standard for traceability. This must-read document covers everything from code scanning principles, laser installation, predictive maintenance, and more.

2D codes are used to store date codes, lot codes, serial numbers, and more. Users who are considering 2D code marking should read this laser marking guidebook.

Some laser marking applications require integration with multiple devices. KEYENCE provides a total marking solution, from X/Y stages and indexing systems to head traversal systems. Learn more in this brochure.

This booklet covers a wide range of laser processing techniques - such as cutting, drilling, and deep engraving - as well as welding and soldering that are unique to lasers.